
HFF
11,6

524

International Journal of Numerical
Methods for Heat & Fluid Flow,
Vol. 11 No. 6, 2001, pp. 524-546.
# MCB University Press, 0961-5539

Received July 2000
Revised April 2001
Accepted April 2001

The effect of choosing
dependent variables and cell-
face velocities on convergence
of the SIMPLE algorithm using

non-orthogonal grids
H. Lai and Y.Y. Yan

Department of Mechanical and Manufacturing Engineering,
Nottingham Trent University, Nottingham, UK

Keywords Fluid mechanics, Algorithms, Convergence

Abstract In this paper the effects of choosing dependent variables and cell face velocities on
convergence of the SIMPLE algorithm are discussed. Using different velocity components as
either dependent variables or cell-face velocities, both convergent rate and calculation accuracy of
the algorithm are compared and studied. A novel method, named `̀ cross-correction'', is developed
to improve the convergence of the algorithm of using non-orthogonal grids. Cases with
benchmark and analytical solutions are used for numerical experiments and validation. The
results show that, although different velocity components are employed as either dependent
variables or cell face velocities, there is no obvious difference in both the convergent rates and
numerical solutions. Moreover, the `̀ cross-correction'' method is validated by computations with
several first-order and high-order convection schemes; and the generality of convergence
improvement achieved by the method is shown in the paper.

Nomenclature
A = discretisation coefficient in

equation (14)
a = combined convection-

diffusion coefficient in
equation (8)

C = discretisation coefficient in
equation (20)

E1, E2, E3 = computational errors defined
in equation (21)

~e i;~ei = contravariant and covariant
bases of curvilinear
coordinates

~eo
i = unit vector of~ei

F = convection-diffusion flux
g, gij, gij = determinant value,

contravariant components
and covariant components of
determinant tensor

~Ii = base vector of Cartesian
coordinates

J ij = cofactor of the element in the
ith row and jth column in the
matrix �~e1;~e2;~e3�

m = mass source term in the
pressure correction
equations (14) and (20)

P = grid node at the centre of
control volume

p; p�; p0 = pressure, initial pressure
value and pressure
correction

Q, Q1 = flow rates at inlet boundary
and cross-section

~R = position of P
S���; S0���;
Spr���; = source terms related to
Sad���; S��� transport variable �
Ui, ui = contravariant and Cartesian

components of velocity ~V
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Introduction
The semi-implicit method for pressure-linked equations (SIMPLE), a well-
developed numerical algorithm for pressure-velocity coupling equations, has
played an important role in solving fluid flow and heat transfer problems since
it was put forward by Patankar and Spalding (1972). In particular, after the
concept of `̀ pressure-weighted interpolation'' or `̀ momentum interpolation''
being proposed by Rhie and Chow (1983), the algorithm becomes much easier
to apply in numerical calculation because only one set of grids is required. As
the pressure field of fluid flow is implicitly related to Mach number, the
SIMPLE algorithm was also improved to be capable of simulating
compressible flows; these have been reported by several researchers such as
Karki and Patankar (1989), Hah and Krain (1990) and Rhie and Stowers (1988).

However, a popular problem accompanying the application of this algorithm
for using strong non-orthogonal body fitted grids is its poor convergent
performance. To improve such performance, many studies have attempted to
employ different velocity components as dependent variables. For example,
Karki and Patankar (1988a, 1988b) and Lee and Chiu (1992) chose the covariant
physical components, while Xi et al. (1991) and Sharatchandra and Rhode
(1994) used the contravariant components as dependent variables. Meanwhile,
other investigators tried to obtain a pressure-correction equation in which the
coefficient matrix may be stronger in diagonal dominance by using different
velocity components at cell faces of control volume. For instance, Karki and
Patankar (1988a, 1988b, 1989), Lee and Chiu (1992), and Choi et al. (1993a,
1993b) applied physical covariant velocities at cell faces instead of the widely
used contravariant components. Indeed, all of these studies have contributed a
lot to improving the SIMPLE algorithm and made it more efficient and suitable
for solving transport problems of fluid flow and heat transfer. It is noted that,
however, there is some confusion about the application of non-orthogonal grids
in body fitted co-ordinates over the selections of both dependent variables and
cell-face velocities. In terms of confusion over choosing dependant variables, a

~V ;Vi = velocity and its physical
covariant component

~V �; ~V 0 = initial velocity and velocity
correction

X ;Xout = horizontal distance from the
inlet of Roache's tunnel and
its maximum value

xi = contravariant curvilinear
coordinates line

yi = Cartesian coordinates line

Greek symbols
� = general transport field

variables (dependent
variable)

ÿ� = diffusion coefficient of �

ÿi
jk = the second kind of Christofel

sign

Superscripts
i, j, k = free indexes of contravariant

component

Subscripts
i, j, k = free indexes of covariant

component
NB = neighbour points to node, P,

i.e. N, S, E, W
P = pertaining to grid point P
P + 0.5 = cell face in the increasing

direction of xi and close to P
n, s, e, w = pertaining cell faces n, s, e, w
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good example is the calculations of laminar flow in Roache's tunnel, which was
carried out by Karki and Patankar (1988b) and Sharatchandra and Rhode
(1994) respectively. Karki and Patankar (1988b) suggested using covariant
velocities as dependent variables, while Sharatchandra and Rhode (1994)
insisted that contravariant components of velocity should be better. As for the
confusion over cell-face velocity selection, Choi et al. (1993a, 1993b) believed
that physical covariant components are better choices than contravariant
components which are commonly used, because this could enhance the
diagonal dominance of coefficient matrix of the pressure correction equation
and therefore improve the convergence. However, in their paper, the covariant
velocity component and the physical covariant component are taken to be the
same concept; this is a mistake. In addition to this, the superscripts and
subscripts used for tensor indexes are not consistent with the conventional
definition.

Therefore, it is necessary to study the effect of choosing different dependent
variables and cell-face velocities on convergence of the SIMPLE algorithm.
This paper reports recent studies on this subject. Based on the definition of
velocity components and derivation of equations for the SIMPLE algorithm in
non-orthogonal co-ordinates, detailed comparisons for both convergent rate
and numerical accuracy when employing different velocity components as
dependent variables are carried out. Following the comparisons, the
equivalence of `̀ two pressure correction equations'' derived by using
contravariant components and physical covariant velocity components at cell
faces respectively is studied and validated by numerical experiments. In
particular, a novel and effective method is developed to improve the
convergence of the SIMPLE algorithm of using non-orthogonal grids; and the
method is validated by testing examples.

Basic equations
To simplify the derivations and comparisons, only two-dimensional flows are
considered. For the co-ordinates systems of non-orthogonal {xi|i = 1, 2, 3} and
Cartesian {yi|i = 1, 2, 3}, x1 and x2 lie in the same plain with y1 and y2, while x3

and y3 and ��@��=�@x3�� � 0 where � is a general variable of the flow field.
Without special declaration, the summation rule of Einstein must be obeyed for
all free indexes i, j and k. As it has been proved by Peric et al. (1988) that there is
no difference for the convergence of the SIMPLE algorithm between using
staggered and non-staggered grids, only non-staggered grids are used in the
present study.

Definition of velocity components
Considering an arbitrary point P in the field, the position of P is ~R and the
velocity at the point is ~V . The Cartesian components ui, contravariant
components U i, covariant components and physical covariant components Vi

of ~V are defined respectively as:
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ui � ~V �~Ii; Ui � ~V �~ei; Ui � ~V �~ei; Vi � ~V �~eo
i ; �1�

where ~Ii are unit basic vectors of the Cartesian system;~ei are, the covariant
basic vectors;~e i are, the contravariant basic vectors; and~eo

i is, the unit vector of
~ei . The relevant formulae between these vectors can be summarised as:

~R � yi
~Ii

~ei � @~R @xi; ~e i � g ij~ej

�
g � det gij

� � � 1 det g ij
� ��

gij �~ei �~ej; g ij �~e i �~e j

~eo
i �~ei=

�����
gii
p �no summation for i�:

8>>>>><>>>>>:
�2�

By using equations (1) and (2), the relationships of ui, Ui and Vi can be
expressed as:

Ui � aijuj; Vi � bijuj; Ui � cijVj; �3�

where:

aij � J ij ���
g
p

; bij � @yj @xi �����
gij
p

; and cij � gij �����
gij
p���

�no summation for both i and j�:

Jij is the cofactor of the element in the ith row and jth column in the matrix
(~e1;~e2;~c3)T.

Discretisation equations
The conservation laws of mass and momentum can be expressed in a general
form with a dependent variable � as follows:

r � ~V�ÿ ÿ�r�
� �

� S �� �: �4�

By integrating equation (4) over the control volume as shown in Figure 1
(shaded area), we have:

Fn ÿ Fs � Fe ÿ Fw � ���
g
p

S���� �P�x1�x2 � S0���; �5�
where Fn, Fs, Fe and Fw are convection-diffusion fluxes across the four cell faces
n, s, e and w respectively, and S0��� represents the diffusion term induced by
the non-orthogonal grids. By employing a subscript P + 0.5 to express the cell
face in the direction of increasing xi and close to the point P, the fluxes and the
cross-diffusion term are then represented respectively as:

FP�0:5 �
���
g
p

Ui�ÿ ÿ�gii @�

@xi

� �� �
P�0:5

�xj

�j 6� i and no summation for i�;
�6�
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and

S0 �� � � ���
g
p

g12 @�

@x2
�x2

� �n

s

� ���
g
p

g21 @�

@x1
�x1

� �e

w

: �7�

To carry out comparisons, the power-law scheme (Patankar, 1980) is applied to
calculate cell-face convection-diffusion fluxes; and the central differencing
scheme is employed to determine the derivatives in equation (7). With respect
to flow calculations with high order convection schemes, such as Chakravarthy
and Osher's (1983) total variation diminishing (TVD) OSHER scheme (second
order) and Gaskell and Lau's (1988) SMART scheme (third order), the
convection term in equation (6) is calculated using a so-called `̀ deferred
correction'' method (Khosla and Rubin, 1974), and the high order resolution for
non-uniform mesh is guaranteed by the normalised variable and space
formulation (NVSF) methodology of Darwish and Moukalled (1994). The final
form of the discretised equation is given as:

aP�P �
X

aNB�NB � S �� �; �8�

where the subscript NB denotes a neighbour point to P.
As for momentum equations, the dependent variables � can be any one of ui,

Ui and Vi, while the coefficients aP and aNB in equation (8) are the same for
different �. The S��� in equation (8) consists of the pressure gradient Spr(�),
and an additional term Sad(�), induced by the non-orthogonal grids. The
representations for the source term in equation (8) are given in Table I.

Figure 1.
Control volume
representation
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Cell-face celocities and pressure-correction equation
A key step of the SIMPLE algorithm is to solve the pressure-correction
equation. To avoid calculations of element eliminating for wide band matrix,
pressure-correction values at far neighbour nodes (NE, SE, NW and SW in
Figure 1) to the central node P are omitted so that the pressure-correction
equation can remain as a five-point scheme for two-dimensional flows.

It is known that the algorithm using strong non-orthogonal grids has poor
convergence because an accurate pressure correction for such grids is difficult
to obtain. If the diagonal dominance for coefficient matrix of the pressure-
correction equation can be enhanced, it will be easier to get an accurate
pressure correction, and the convergence of the algorithm is therefore
improved. The method of choosing cell face velocities, as indicated by Lee and
Chiu (1992) and Choi et al. (1993a, 1993b), is concerned with using physical
covariant velocities instead of the widely used contravariant components at cell
faces to derive `̀ another'' pressure-correction equation. However, this method
cannot enhance the diagonal dominance for the coefficient matrix of the
equation, as the two pressure-correction equations are equivalent. This can be
demonstrated in the following paragraphs.

By setting � = 1 and ÿ� = 0, equation (5) becomes continuity and the source
term is zero, so: ���

g
p

U 1�x2
��n
s
� ���

g
p

U 2�x1
��e
w
� 0: �9�

According to Table I and equation (8), we have:

Ui � Hi � Bij @p

@xj
; �10�

where:

Hi �
P

aNBUi
NB � Sad Ui

ÿ �
aP

;Bij � ÿ
���
g
p

gij�x1�x2

�aP
:

Following the basic steps of the SIMPLE algorithm (see Patankar and

Table I.
Formulae of source

terms in momentum
equation

S���
� Spr�� Sad���

ui ÿ J ji

�

@p

@xj
�x1�x2 S0�ui�

Ui ÿ gij

�

@p

@xj

���
g
p

�x1�2 ÿUjUkÿi
jk �

1���
g
p @

���
g
p

ÿ�gjkUmÿi
mk

ÿ �
@xj

� ÿ�gjkUn
k ÿi

jn

" #
���
g
p

�x1�2
ÿ �� S0�Ui�

Vi ÿ 1

�
�����
gij
p @p

@xi

���
g
p

�x1�x2 P
aNB� �Vi � Vi�NB � bijS

0�uj�; � �V �NB � �bij�P�uj�NB

(no summation for i)
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Spalding, 1972), corrections Ui0 and p0 are induced to the intermediate values
U i* and p* to satisfy both continuity and momentum conservations. The
revised parameters of flow are expressed as:

Ui � Ui� � Ui0 ; p � p� � p0: �11�

Substituting equation (11) into equation (10) and neglecting the effects of
pressure correction on Hi and Bij, we get:

Ui0 � Bij @p0

@xj
: �12�

To avoid inducing pressure correction at far neighbour nodes, cross derivatives
��@p0� �@xj���

in equation (12) can be dropped, then:

Ui0 � Bii @p0

@xi
�no summation for i�: �13�

Substituting equations (11) and (13) into equation (9) and rearranging terms, a
discretisation equation of p0 is obtained as:

CPp0P �
X

CNBp0NB �mP ; �14�

where:

CN � gg11
ÿ �

�aP�s �x2
ÿ �2

; CS � gg11 �aP= �s �x2
ÿÿ �2

CE � gg22
ÿ �

�aP�e �x1
ÿ �2

; CW � gg22 �aP= �w �x1
ÿÿ �2

Cp �
X

CNB

mP �
���
g
p

U 1��x2
���s
n
� ���

g
p

U 2��x1
���w
e
:

Equation (14) is the pressure-correction equation derived by using the
contravariant components of velocity at the cell faces. As CNB > 0 and
CP =

P
CNB, the coefficient matrix of equation (14) is already in good diagonal

dominance.
Furthermore, if we choose the components of physical covariant velocities,

Vi to calculate the convection at cell faces, `̀ another'' pressure correction
equation can be derived; this has been indicated by Karki and Patankar (1988a),
Lee and Chiu (1992), and Choi et al. (1993a, 1993b). That is, according to
equation (8) and Table I, we have:

Vi � Hi � Di
@p

@xi
�no summation for i�; �15�

where:
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Hi �
P

aNBViNB � Sad�Vi�
aP

; Di � ÿ
���
g
p

�x1�x2

�aP
�����
gii
p �no summation for i�:

Similar to equations (11) and (12), we have:

Vi � V �i � V 0i ; p � p� � p0; �16�

V 0i � Di
@p0

@xi
�no summation for i�: �17�

Meanwhile, the substitution of equation (3) into equation (9) yeilds:���
g
p

c11V1 � c12V2

ÿ �
�x2

���n
s
� ���

g
p

c21V1 � c22V2

ÿ �
�x1

���e
w
� 0: �18�

By moving the terms Vj(j 6� i) which are contained in xi direction to the right-
hand side of equation (18), we obtain:���

g
p

c11V1�x2
���n
s
� ���

g
p

c22V2�x1
���e
w
� mno; �19�

where:

mno � ���
g
p

c12V2�x2
���s
n
� ���

g
p

c21V1�x1
���w
e
:

Combining equations (16) and (19) yields `̀ another'' pressure-correction
equation as:

APp0P �
X

ANBp0NB �mno �mc; �20�

where:

AN � gc11=
������
g11
p

�aP

ÿ �
n

�x2
ÿ �2

; AS � gc11=
������
g11
p

�aP

ÿ �
s

�x2
ÿ �2

AE � gc22=
������
g22
p

�aP

ÿ �
e

�x1
ÿ �2

; AW � gc22=
������
g22
p

�aP

ÿ �
w

�x1
ÿ �2

AP �
X

ANB

mc � ���
g
p

c11V �1 �x2
���s
n
� ���

g
p

c22V �2 �x1
���w
e
:

As a result of this, we now seem to have `̀ two'' pressure-correction equations.
However, using the transformation relationship given in equation (3), it is easy
to show:

AP � CP ; mno �mc � mP ; ANB � CNB:

This is to say that pressure-correction equations (14) and (20) are completely
equivalent; and using physical covariant components of velocity to replace the
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contravariant components at cell faces of control volume cannot get a pressure-
correction equation whose diagonal dominance for the coefficients matrix is
enhanced.

The above summary is contradictory to the conclusions of Lee and Chiu
(1992) and Choi et al. (1993a, 1993b). A basic point for the referred works is that
the cross derivatives, ��@p0� �@xj���j 6� i��

, are dropped in obtaining equation
(13) from equation (12); while the term-dropping actions have not taken place
during the derivation of equation (17).

Although such a basic point looks reasonable, by analysis it is not difficult
to explain the reason why the terms Vj(j 6� i), contained in xi direction need to be
moved to the right hand of equation (18) in deriving equation (19). In fact, this
needs the same consideration of dropping cross derivatives from equation (12).
The only aim of these actions is to prevent p0 at far neighbour nodes from
appearing in the pressure-correction equation, so that it could be in a format of
a five-point scheme (for two-dimensional problems). Such actions are also
based on the same assumption that the grids are not strongly non-orthogonal.
With the prerequisite destination and assumption, it is impossible to obtain a
pressure-correction equation whose coefficient matrix is stronger in diagonal
dominance.

The `̀ cross-correction'' method
As indicated before, it is difficult to achieve accurate pressure correction when
the numerical grids are strongly non-orthogonal. In such a situation, it will be
valuable if the poor convergence of the SIMPLE algorithm can be improved
easily and effectively while the five-point scheme for the pressure-correction
equation can be retained. In the present study, a novel and effective method is
developed.

There are two factors that need to be taken into account. First, although the
pressure correction obtained with a five-point scheme in equation (14) or (20) is
possibly not as accurate as those achieved with a nine-point scheme in which
the p0 at far neighbour nodes is taken into account, it is still a valuable
approximation to the accurate p0. Moreover, the convergent rate is also
dependent on the velocity corrections. Based on these considerations, the five-
point scheme for the pressure-correction equation is employed to obtain the p0,
but the velocity correction was applied by using equation (12) instead of
equation (13). For the case of using physical covariant velocity components at
cell faces, the correction for Vi in xi direction can be obtained according to
equation (17), meanwhile ��@p0� �@xj���

(j 6� i) at the cell face P + 0.5, was
calculated through interpolation between the corresponding values at the nodes
P and P + 1, and this value was used to get the correction of Vj(j 6� i). For
simplicity, we name this method `̀ velocity cross-correction'' or `̀ cross-
correction''.
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Numerical experiment and analysis
The convergence of the SIMPLE with different dependent variables
For convenience of comparison, the contravariant components U i, are in the
first place employed as cell-face velocities. In this situation, pressure correction
can be obtained by equation (14) and the velocity correction can be applied by
using equation (17).

Separated laminar flow in Roache's tunnel. The separated laminar flow in
Roache's tunnel is often employed as a benchmark testing case for numerical
algorithms. The benchmark numerical solution for this testing case was
reported by Napolitano and Orlando (1985), achieved by Cliffe (cited in
Napolitano and Orlando, 1985) using finite element method and with a mesh
size 21 � 21 for the calculation. We use this testing case to compare the
convergence of the SIMPLE algorithm of using different velocity components
as dependent variables in the momentum equations. The flow configuration is
shown in Figure 2, and the mesh size in our computation is 21 � 20, which
satisfies the prescribed 21 � 21 grid points requirement for a meaningful
comparison for the test problem (Napolitano and Orlando, 1985). Assuming the
inflow rate is Q, and the calculated result for flow rate across a grid line normal
to the flow direction is Q1, the calculation convergence is declared only after the
following error criteria are satisfied:

E1 � max Qÿ Q1j j� �
Q

10ÿ3;

E2 �
P

mPj j
Q

< 10ÿ4

E3 � max mPj j� �
Q

< 10ÿ6

:

8>>>>><>>>>>:
�21�

The results for the case of Re = 10 are shown in Figures 3 and 4. Figure 3
compares the convergent paths of the SIMPLE algorithm, with ui, Ui and Vi

employed as dependent variables in the momentum equations. The convergent
results were also compared with the benchmark solutions in Figure 4. The

Figure 2.
Flow configuration of

Roache's tunnel



HFF
11,6

534

minimum iterations needed to get convergent solutions for � = ui, U i and Vi are
90, 91 and 94 respectively (the relaxing factors are �u = 0.7, �p = 0.3). The
results indicate that there is no obvious difference in both the convergent rate
and the accuracy of the algorithm when different dependent variables in the
momentum equations are used.

Poiseuille flows. Analytical solutions exist for the Poiseuille flows. In order to
examine the effects of non-orthogonal grids on the convergence, the grids
system shown in Figure 5 is employed, where � is the angle between non-
orthogonal grid lines. The ratio for the length to width of the computational
domain is L/H = 40; this ensures that the outflow is fully developed, as the
Reynolds number is Re = 500 in the calculation.

With uniform velocity and pressure imposed at the inlet and outlet
boundary, respectively, the analytical solution for the fully developed velocity
is u1(y) = u1max[1 ± (y/0.5H)2], and u2(y) = 0; where u1max is the maximum value
of the velocity. The error between the computational and analytical solutions is
defined as:

Err u1� � � max
u1computational ÿ u1analytical

u1 max

���� ����� �
: �22�

Figure 6 shows the convergent path for the case of � = 458. Five cases with �
equalling to 908, 608, 458, 308 and 208, respectively, were calculated. The
iterations and final maximum error for the calculations were shown in Table II.
Again, the results in Figure 6 and Table II show that the convergent rate of the
SIMPLE algorithm does not change with dependent variables, such as ui, U i or
Vi, in the momentum equations. Moreover, the error of � = U i is found to be
relatively larger than in the other cases. This may result from error

Figure 3.
Convergence path for
Roache's tunnel flow ±
choosing dependent
variables
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accumulation in the integration for the complex source term which contains
Christoftel sign.

Based on the above discussions and analysis, it is clear that, in non-
orthogonal grids system, the convergence of the SIMPLE algorithm does not
change with the choices of velocity components employed as the dependent
variable in the momentum equations. To simplify the analysis, only the case of
�= ui will be considered in latter parts of this paper.

Figure 4.
Computational results of

Roache's tunnel flow ±
choosing dependent

variables: (a) pressure at
the wall; and

(b) vorticity at the wall
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Validation for the equivalence of two pressure-correction equations
As the test cases are the same as those discussed previously, equations (14) and
(20) respectively were employed as a pressure-correction equation in the
calculations for comparison. Figures 7 and 8 show the convergent path and the
solution respectively for the flow in the Roache's tunnel. The convergent path
of Poiseuille flow (� = 458) is shown in Figure 9. The results for the cases of
� = 608, 458, 308 and 208 are also given in Table III.

It can be seen from the two test cases that, when the two pressure-correction
equations were employed respectivlely, the results for both convergent rate and

Figure 5.
Numerical grids for
computation of
Poiseuille flow

Figure 6.
Convergent path for
Poiseuille flow (� � 45�)
± choosing dependent
variables

Table II.
Convergency of
SIMPLE for Poiseuille
flow with different
dependent variables

Relax factor Err�u1� % Minimum iterations to converge
�� ��u; �p� ui Ui Vi ui U i Vi

90 0.7, 0.3 0.1312 0.1312 0.1314 185 180 200
60 0.7, 0.3 0.1517 0.1546 0.1521 240 230 255
45 0.6, 0.3 0.1869 0.1920 0.1873 280 295 275
30 0.6, 0.2 0.2326 0.2792 0.2315 440 450 410
30 0.6, 0.3 / / / Divergent Divergent Divergent
20 0.6, 0.2 / / / Divergent Divergent Divergent
20 0.6, 0.1 0.3418 0.4511 0.3926 700 720 750
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calculation accuracy are very consistent. This indicates that the convergence of
the SIMPLE algorithm hardly changes with the choices of cell-face velocities;
and the equivalence of equations (14) and (20) is effectively validated.

Effects of `̀ cross-correction'' on convergence
The effect of cell-face velocity cross-correction on convergence is validated in
two steps. One is to calculate convection by using the widely-used power law.
The other is to examine the results of calculations of using different convection
schemes. For convenience, the term of cell-face velocity cross-correction is
briefly referred as `̀ cross-correction'' and that obtaining cell-face velocity
corrections with equation (13) or (17) is referred as `̀ original''.

Calculations of using power law. The convergent paths of numerical
simulations for flow in Roache's tunnel are shown in Figure 10. These results are
achieved by using two different methods of cell-face velocity correction,
respectively. The results for Poiseuille flow are presented in Figure 11 (� = 458)
and Table IV (The corresponding results of `̀ original'' are the same as those in
Table III and are therefore omitted).

The comparisons for convergent paths given in Figures 10 and 11 indicate
that the effects of the `̀ cross-correction'' method on the convergence acceleration
are significant. Typically, by using such cell-face velocity `̀ cross-correction''
method, the number of iterations for a convergent solution is largely reduced. It
should be pointed out that, for Poiseuille flow, Table IV shows that the `̀ cross-
correction'' is only effective for some conditions. For example, convergence is
accelerated for � = 608, 458 and 308; but for � = 908, the grid lines are
orthogonal and the `̀ cross-correction'' method becomes invalid; for � = 208, the
grids are strongly non-orthogonal, the effect of `̀ cross-correction'' is not

Figure 7.
Convergent path for

Roache's tunnel flow ±
choosing cell face

velocity



HFF
11,6

538

significant, because the pressure corrections obtained by five-point schemes are
far away from the accurate value of p0.

Comparison for different convection schemes. The `̀ cross-correction'' is
effective in accelerating the convergence of calculations with different
convection schemes. This can be shown in the following comparisons.

Figure 8.
Computational results of
Roache's tunnel flow ±
choosing cell-face
velocity
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Figure 9.
Convergent path for

Poiseulle flow (� � 45�)
± choosing cell-face

velocity

Table III.
Convergency of

SIMPLE for Poiseuille
flow using different
pressure-correction

equation

Relaxing factor Err�u1� % Minimum iterations to converge
�� ��u; �p� Equation (14) Equation (20) Equation (14) Equation (20)

60 0.7, 0.3 0.1517 0.1520 240 242
45 0.6, 0.3 0.1869 0.1877 280 283
30 0.6, 0.2 0.2326 0.2321 440 429
20 0.6, 0.1 0.3418 0.3415 700 712

Figure 10.
Effects of

`̀ cross-correction'' on the
convergent path of

Roache's tunnel flow
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The testing example is the lid-driven flow in a cavity with inclined side walls,
which is set up as the first test case for non-orthogonal grids by Demirdzic et al.
(1992). The geometry and boundary conditions are shown in Figure 12, in
which the inclination angle � = 458, and L = 1, density � = 1 and lid velocity
UL = 1. The Reynolds number, defined using the lid velocity, UL, and cavity
length, L, is 1,000 by setting the viscosity to be 0.001. Demirdzic et al. (1992)
proved that it is possible to obtain a grid-dependent solution if the mesh is
coarser than 50 � 80. They provided a set of benchmark solutions on an
extremely fine mesh, 320 � 320, and a high order convection scheme was
applied.

In the present calculation, a non-uniform mesh of 160 � 160, which expands
symmetrically towards the centrelines (CL1 and CL2 in Figure 12) from all
walls, is found to be fine enough to obtain the grid-independent solution and is
therefore adopted. We have also tried to further refine the mesh to 320 � 320,
similar to what Demirdzic et al. (1992) did; however, no further accuracy
improvement was achieved.

Figure 11.
Effects of
`̀ cross-correction'' on the
convergent path of
Poiseuille flow (� � 45�)

Table IV.
Effects of a
`̀ cross-correction'' for
Poiseuille flow

Err�u1� % Minimum iterations to converge
�� Relaxing factor

��u; �p�
Equation (14)
cross-section

Equation (20)
cross-correction

Equation (14)
cross-correction

Equation (20)
cross-correction

90 0.7, 0.3 0.1312 0.1311 185 188
60 0.7, 0.3 0.1520 0.1531 198 203
45 0.6, 0.3 0.1855 0.1858 182 180
30 0.6, 0.2 0.2300 0.2324 235 254
20 0.6, 0.1 0.3412 0.3419 620 625
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To check the effects of `̀ cross-correction'' on convergence improvement,
following convection schemes, namely, the first-order upwind scheme, the
power-law (which is also of first-order resolution), the second-order TVD
scheme OSHER (Chakravarthy and Osher, 1983), and the third-order scheme
SMART (Gaskell and Lau, 1988), were employed. To simplify the comparison,
only Cartesian velocity components are used as dependent variables, and only
equation (14) is employed to obtain pressure correction p0. As for the relaxation
factors for velocity and pressure, they are simply set to be �u = 0.7 and �p = 0.3.
The computational results are presented in Figures 13 and 14, respectively.

The profiles of Cartesian velocity components, in horizontal and vertical
positions, along centre lines are shown in Figures 13(a) and 13(b). The results for
using different convection schemes are compared with the benchmark solutions
(Demirdzic et al., 1992). It is noted that first-order schemes (the first-order upwind
and the power law) give worse results, while high order schemes (the OSHER and
the SMART) offer excellent agreements with the benchmark solution.

In Figures 14(a)-(d), convergent paths of calculations using the above-
mentioned schemes, with and without employing the `̀ cross-correction'', are
described. As the flow configuration is an enclosure, the reference flow rate, Q
in equation (21), is calculated by Q = 1

2 UL � L to define the error criteria.
Although the numerical accuracy for different schemes is different, the effect of
`̀ cross-correction'' on converge acceleration is obvious. In other words, for a
certain convection scheme employed, the calculation with `̀ cross-correction''
obtains a faster convergence than without `̀ cross-correction''.

Conclusions
In this paper, the convergence performance of the SIMPLE algorithm of using
non-orthogonal grids is studied. The effects of choosing different velocity
components as dependent variables on the convergence of calculations are
analysed. The equivalence of the two pressure-correction equations derived by

Figure 12.
Geometry and boundary
conditions for squeezed

lid-driven cavity flow
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Figure 13.
Centreline velocity
profiles in the squeezed
cavity: (a) U -component;
and (b) V -component



Effect of choosing
dependent
variables

543

Figure 14.
Convergent paths of
calculation with and

without
`̀ cross-correction''

(continued)
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Figure 14.
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choosing two kinds of cell-face velocities is demonstrated and numerically
validated. A novel method called `̀ cell-face velocity cross-correction'' is
developed to accelerate the convergence of calculations. The following
conclusions can be summarised:

. With non-orthogonal grids, the convergence of the SIMPLE algorithm
does not change with dependent variables. Considering the source term
for � = ui being the simplest, ui should be suggested for use as a
dependent variable in the momentum equations.

. The two pressure-correction equations, derived by using contravariant
or physical covariant components of velocity at cell faces respectively,
are equivalent. With the prerequisite assumption of grids not being
strongly non-orthogonal to keep a five-point scheme, it is impossible to
derive a pressure-correction equation whose coefficients matrix is
stronger in diagonal dominance.

. The method of cell-face velocity `̀ cross-correction'' is effective in
improving the convergence of the SIMPLE algorithm of using non-
orthogonal grids. However, the method will become less effective if the
grids are strongly non-orthogonal because the pressure correction
obtained with the five-point scheme will be far away from their accurate
values.

. The `̀ cross-correction'' method is effective for both first-order and high-
order calculations.
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